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Variable Definitions

σ Stress

e Strain (normal or engineering)

F Force

V Shear force

P Axial force

R Reaction force

M Moment

T Torque

Qi General load

qi General displacement

p Distributed load

b Base dimension

h Height dimension

r Radius

L Length

∆L Change in length

A Area

V Volume

ν Poisson’s ratio

E Young’s modulus

G Shear modulus

Q First moment of area / statical moment of area

I Area moment of inertia / second moment of area

J Second polar moment of area

ks Linear spring constant

kt Torsional spring constant

∆x Linear displacement
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θ Angular displacement

U Strain energy

WE External work

KE Kinetic energy

HE Heat absorbed

Π Total potential energy

w Shape function

κ Curvature

1 Introduction

Energy methods are powerful tools in structural analysis that can simplify the
solving of difficult mechanical problems. Instead of using equilibrium equations,
which can often result in a very difficult and complex system of equations, it
is often simpler to use energy based methods. In some cases, you may have a
Statically Indeterminate system where the internal forces and reactions are
simply unknowable with equilibrium equations. For such systems, you must use
tools like Castigliano’s theorems or the Rayleigh-Ritz method.

The following notes will dive into an overview on structural energy and work,
as well as how to use these concepts effectively to solve problems you might see
when analyzing aerospace structures.

2 Strain Energy

Strain Energy (U) is the energy stored in a material under loading. Recall
that materials under loading exhibit some deflection or displacement dependent
on the load. When that load is removed, the strain energy stored in that dis-
placement is released. For example, if elastically deformed, the material will
return to its original unloaded state.

In a nutshell, the strain energy is the potential energy stored in material
deformations that is released when the loads are removed. The general formula
for strain energy is given by Eq. 1, where i and j vary from 1 to 3 and V is the
volume of the material.

U =

∫
V

(∫ eij

0

σijdeij

)
dV (1)

The formula for strain energy simplifies for elastic materials, and has two
possible formulations dependent on the desired variable (stress or strain). The
stress formulation is given by Eq. 2, while the strain formulation is given by
Eq. 3.
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U =

∫
V

[
1

2E
(σ2

11 + σ2
22 + σ2

33)−
ν

E
(σ11σ22 + σ22σ33 + σ33σ11)

+
1

2G
(σ2

12 + σ2
23 + σ2

31)

]
dV

(2)

U =

∫
V

[
Eν

2(1 + ν)(1− 2ν)
(e11 + e22 + e33)

2

+G(e211 + e222 + e233 + 2e212 + 2e223 + 2e231)

]
dV

(3)

These equations may seem intimidating, but they are rarely used in this
form thanks to additional simplifications that can be made. Some commonly
used strain energy formulations will now be listed for your convenience.

1. For simple axial loading (P ), the strain energy simplifies to Eq. 4.

Uaxial =

∫
V

1

2E
σ2
11dV =

1

2

∫ L

0

P (x)2

EA
dx (4)

2. For simple moment loads (M), the strain energy simplifies to Eq. 5.

Umoment =

∫
V

(
1

2E

M2y2

I2

)
dV =

1

2

∫ L

0

M(x)2

EI
dx

=
1

2

∫
M(θ)2

EI
Rdθ

(5)

3. For shear loads (V ), the strain energy simplifies to Eq. 6 (Note Q here
refers to the first moment of area, while Qi in future sections refers to
general loads).

Ushear =

∫
V

(
1

2G

V 2Q2

I2b2

)
=

1

2

∫ L

0

V (x)2

GI2
dx

∫
A

Q2

b2
dA (6)

4. For torquing loads (T ), the strain energy simplifies to Eq. 7.

Utorque =

∫
V

1

2G
(σ2

12 + σ2
13)dV =

∫ L

0

T (x)2

2GJ
dx (7)

For most beam bending problems, the total strain energy is the sum of the
axial, moment, and shear energies. Functions for these forces and moments
can be found with shear moment diagrams. The total strain energy is given in
Eq. 8. In many cases, the shear contributions are negligible compared to the
moment contributions.

Utot = Uaxial + Umoment + Ushear (8)
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For beams subject to elongation, the strain energy simplifies to Eq. 9. This
formula will be especially important for truss structures.

Uelong =
EA

2L
∆L2 (9)

Just as important is the energy stored in springs. The strain energy for
linear and torsional springs are given by Eqs. 10 and 11, respectively.

Us =
1

2

F 2
s

ks
=

1

2
ks∆x2 (10)

Us =
1

2

M2
s

kt
=

1

2
ktθ

2 (11)

Another important concept is the Strain Energy Density (dU), which is
the strain energy per unit volume. The equation is given by Eq. 12.

dU =

∫ eij

0

σijdeij (12)

The Complementary Strain Energy (U∗) does not have an easy physical
interpretation. However, if you note that the strain energy is simply the area
BELOW the stress-strain curve, the complementary strain energy is the area
ABOVE the stress-strain curve (an example seen in Fig. 1). The governing
equation for complementary strain energy is given by Eq. 13.

U∗ =

∫
V

(∫ σij

0

eijdσij

)
dV (13)

Figure 1: Strain and Complementary Strain Energy in a Stress Strain Curve for
a Nonlinear Elastic Bar (Chang via Analysis of Structures)
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3 External Work

External Work (WE), otherwise known as Work Done on the system, is the
work done on the system by external loads. In physics, you probably learned
that work is load times displacement. It is no different here. The general
equation for external work is given by Eq. 14, where Qi are the loads and qi are
the corresponding displacements from said load (examples illustrated with Fig.
2). Note that this formula assumes all loads acting simultaneously. Additionally,
the 1

2 in the equation is due to us taking the average value of the load during
the loading process (i.e. 1

2Qi).

WE =
1

2

n∑
i=1

qiQi (14)

Figure 2: Generalized Loads and Displacements

Conservation of Energy allows us to relate the external work and the
strain energy. According to the first law of thermodynamics, the work done to
an object (WE) plus the heat absorbed by the object (HE) from its surroundings
is equivalent to the change in internal energy of the object (∆E). We also note
that the change in internal energy of the object is a function of the kinetic (KE)
and potential (strain energy) energies. This relationship is outlined in Eq. 15.

∆E = U +KE = WE +HE (15)

For structural analysis, we will assume that the deformation process is adia-
batic (HE = 0) and very slow (such that equilibrium is maintained through the
whole process, i.e. KE = 0). Thus, we get a simplified conservation of energy
equation demonstrating the relationship between work done by applied loads
and internal strain energy with Eq. 16.

WE = U (16)

In most energy methods, we will need to define strain energy. Eq. 16 allows
us to directly relate external work with strain energy (under a few assumptions),
which is very advantageous for solving complicated problems.
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4 Principles of Virtual Work and Minimum To-
tal Potential Energy

While the principles of virtual work and minimum total potential energy are
important in structural mechanics and energy methods, we will not typically di-
rectly employ them for solving problems in this course. Instead, the workhorse of
energy methods are Castigliano’s theorems. But before discussing Castigliano’s
theorems, this section on these principles will provide a deeper background on
the concepts and tools that are used to derive and understand the theorems.

The Principle of Virtual Work is a work-energy relationship describ-
ing a structural system under Virtual Displacements (sometimes called a
Dummy Displacement). Virtual displacements are displacements in a struc-
tural system that do not really exist, and therefore can be treated as arbitrary
values.

The principle of virtual work states that if a structure is in equilibrium and
remains as such under a virtual displacement, the external virtual work (δWE)
is equal to the change in internal strain energy (δU). This is given by Eq. 17.
Note that the converse of the principle is also true (if Eq. 17, then structure is
in equilibrium).

δWE = δU (17)

Note that the external virtual work can be defined using Eq. 18, and the
internal virtual strain energy with Eq. 19. You may be curious why the virtual
work is lacking the 1

2 that the external work equations has. This is because we
assume the loads to be at their final values before the virtual distortion occurs.

δWE =

n∑
i=1

Qiδqi (18)

δU =

∫
V

σijδeijdV (19)

The importance of the principle of virtual work is in its use as a strategy
to solve for unknown loads in structural systems (statically indeterminate or
otherwise). By adding a virtual displacement (typically δqi = 1) and using the
above equations, one gets a straight forward method for finding the loads.

The Principle of Complementary Virtual Work is another work-energy
relationship describing a structural system under Virtual Loads (sometimes
called Dummy Loads). Virtual loads, similarly to virtual displacements, are
not real and therefore are arbitrary.

The principle of complementary virtual work states that the complementary
external virtual work (δW ∗

E) done by external virtual loads under the actual
deformation of a structure is equal to the complementary change in internal
strain energy (δU∗). This is given by Eq. 20.

δW ∗
E = δU∗ (20)
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Note that the complementary external virtual work can be defined using Eq.
21, and the complementary internal virtual strain energy with Eq. 22.

δW ∗
E =

n∑
i=1

δQiqi (21)

δU∗ =

∫
V

δσijeijdV (22)

The importance of the principle of complementary virtual work is in its use as
a strategy to solve for unknown displacements in structural systems (statically
indeterminate or otherwise). By adding a virtual loads (typically δQi = 1) and
using the above equations, one gets a straight forward method for finding the
displacements.

The Total Potential Energy of the structure (Π) is given in Eq. 23, and
is the sum of external work and internal strain energy.

Π = U −WE (23)

The Principle of Minimum Potential Energy is given by Eq. 24, where
δΠ is the variation of the total potential energy. This states that of all the
displacement fields which satisfy the system constraints, the correct state is
that which makes the total potential energy of the structure a minimum. In
other words, virtual displacements will not change the total potential energy
because the structure will be at a minimum energy.

δΠ = 0 ∀δqi (24)

The Total Complementary Potential Energy of the structure (Π∗) is
given in Eq. 25, and is the sum of complementary external work and comple-
mentary internal strain energy.

Π∗ = U∗ −W ∗
E (25)

The Principle of Minimum Complementary Potential Energy is
given by Eq. 26, where δΠ∗ is the variation of the total complementary po-
tential energy. This states that of all the stress states which satisfy the system
constraints, the correct state is that which makes the total complementary po-
tential energy of the structure a minimum. In other words, virtual loads will
not change the total complementary potential energy because the structure will
be at a minimum energy.

δΠ∗ = 0 ∀δQi (26)
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5 Castigliano’s 1st Theorem

As stated previously, the principles of virtual work and minimum total poten-
tial energy are important for deriving and understanding Castigliano’s theorems.
Applying Castigliano’s theorems is the bread and butter of many energy meth-
ods courses. Understanding what they are and how to use them will allow you
to use energy methods to solve previously unsolvable problems in structural
mechanics.

Castigliano’s 1st Theorem states that if the strain energy stored in an
elastic structure is expressed as a function of the generalized displacements, the
first partial derivative of the strain energy with respect to any of the generalized
displacements (qi) is equal to the corresponding generalized load (Qi). This is
described formulaically with Eq. 27.

In a nutshell, Castigliano’s 1st theorem allows us to solve for the load given
knowledge of the strain energy of the structure and the measured displacements.
Applying this theorem can appear tricky at first, but by breaking it down into
manageable steps you will find that it becomes very simple. In many cases, even
simpler than applying equilibrium equations.

Applying Castigliano’s 1st Theorem:

1. Place displacements (qi) at all non-fixed locations with applied external
loads acting in the direction of that load

2. Find the strain energy of the system (U)

3. Rewrite the strain energy of the system in terms of the displacements
(U(qi))

4. Solve the derivative equation given by Eq. 27 for the unknown load(s)
(Qi)

∂U

∂qi
= Qi (27)

Let’s demonstrate this process with a simple example. Given a truss struc-
ture like that depicted in Fig. 3, we would like to find the value for a load Q1

and the internal axial loads on the bars (FA and FB) given a displacement q1.
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Figure 3: Castigliano’s 1st Theorem Example

The first step is to place non-fixed displacements in our structure, which is
already done for us in Fig. 3.

The second step is to find the strain energy of the system. We have 2 beams,
A and B. The energy in each beam can be summed to find the strain energy of
the entire system. This is given by Eq. 28.

U = UA + UB (28)

An important aspect to consider is that A and B will have elongations given
by ∆LA and ∆LB respectively (thanks to Q1). These elongations are pictured
in Fig. 4.
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Figure 4: Beam Elongations

From the previous section on strain energy, we can rewrite the strain energy
of the system with Eq. 29 (assuming the cross sectional area A and Young’s
modulus E are the same for both beams).

U =
EA

2L
∆L2

A +
EA

2L
∆L2

B =
EA

2L
(∆L2

A +∆L2
B) (29)

The third step is to rewrite the strain energy in terms of the displacement
q1. This can be done by relating the elongations ∆LA and ∆LB to q1 using
transformations as seen in Fig. 5, and are given by Eq. 30.

Figure 5: Elongations and Displacements

∆LA = cos(30◦)q1

∆LB = cos(30◦)q1
(30)

The new strain energy equation in terms of q1 can now be given with Eq.
31.
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U =
EA

L
cos2(30◦)q21 (31)

The final step is to use Eq. 27 to relate the strain in terms of displacement
to the unknown load Q1. This is accomplished with Eq. 32. And with that,
we’ve solved for the unknown load!

Q1 =
∂U

∂q1
= 2

EA

L
cos2(30◦)q1 (32)

We also would like to solve for the internal axial loads in the bars. This can
be easily accomplished using elastic stress-strain relationships. We can represent
the internal axial load of the beam using the equation derived in Eq. 33.

σ = Eε

F

A
= E

∆L

L

F = EA
∆L

L

(33)

Implementing these relationships, we find the internal axial loads given by
Eq. 34.

FA = FB = EA
cos(30◦)q1

L
(34)

6 Castigliano’s 2nd Theorem

Castigliano’s 2nd Theorem states that if the strain energy stored in an
elastic structure is expressed as a function of the generalized loads, the first
partial derivative of the strain energy with respect to any of the generalized
loads (Qi) is equal to the corresponding generalized displacement (qi). This is
described formulaically with Eq. 36.

In a nutshell, Castigliano’s 2nd theorem allows us to solve for the displace-
ment of a structure given knowledge of the strain energy and the applied loads.
Applying this theorem can appear tricky at first, but by breaking it down into
manageable steps you will find that it is mostly bark and no bite.

12



Applying Castigliano’s 2nd Theorem:

1. If necessary, add an imaginary load (Qimag = 0) at the location of the
desired deflection

2. If the structure is statically indeterminate, select redundant loads (Qred

with corresponding displacement qred) at kinematically constrained loca-
tions (fixed with a joint or spring) until the structure is no longer statically
indeterminate

3. Find the strain energy of the system (U) in terms of the known external
loads, imaginary loads, and redundant loads

4. Solve for the redundant loads using Castigliano’s 2nd theorem applied in
Eq. 35 (note generally qred = 0 except for springs)

∂U

∂Qred
= qred (35)

5. Using the newly determined values of the redundant loads, find strain
energy of the system in terms of known external loads and imaginary
loads only

6. Solve for the desired displacement using Castigliano’s 2nd theorem with
Eq. 36. Use Qimag = 0 if necessary

∂U

∂Qi
= qi (36)

This process is certainly a bit more complicated than Castigliano’s 1st the-
orem. To more clearly illustrate this process, let’s do a simple example. Given
a beam structure like that depicted in Fig. 6, we would like to find the value
for a displacement q2 given an applied load Q1.
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Figure 6: Castigliano’s 2nd Theorem Example

The first step is to add an imaginary load if necessary. In this case, an
imaginary load is necessary since the displacement we are solving for (q2) does
not have an associated load (what can we take the derivative with respect to).
Let’s add an imaginary load Q2 = 0 to the beam like seen in Fig. 7.

Figure 7: Adding Imaginary Load Q2
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The second step is to fully characterize all external applied loads on the
structure. For this, we will need to use the free body diagram shown in Fig. 8.

Figure 8: Free Body Diagram

We can use the equilibrium equations to solve for the boundary condition
reaction forces (R). These are given by Eqs. 37 and 38. Note that there are no
forces in the x direction, so that equilibrium equation is of no use to us.∑

Fy = 0 = RA −Q1 +RB +Q2 +RC (37)

∑
MA = 0 = −Q1

L

4
+RB

L

2
+Q2

3L

4
+RCL (38)

You may notice we have an immediate problem. This structure is statically
indeterminate! There are 3 unknown forces (RA, RB , and RC) and only 2
equilibrium equations. Because of this, we need to introduce a redundant load,
or a load we take as known. The load should be taken at a kinematically con-
strained location (a fixed joint or a spring). Additionally, appropriately selected
redundant loads, if removed from the structure, should leave the structure as
statically determinate. Let’s choose RC to be our redundant force. To verify
this is a good choice, let’s sketch the structure without RC (Fig. 9) and ensure
it is statically determinate. As we can see with Eqs. 39 and 40, we have two
equations and two unknowns. Thus, the structure is statically determinate! So,
RC is a good choice as a redundant load.
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Figure 9: FBD without Redundant Load RC

∑
Fy = 0 = RA −Q1 +RB +Q2 (39)

∑
MA = 0 = −Q1

L

4
+RB

L

2
+Q2

3L

4
(40)

Taking RC as the redundant load, we now have only two unknowns (RA and
RB) and 2 equations, which is solvable. This results in Eqs. 41 and 42.

RA =
Q1

2
+

Q2

2
+RC (41)

RB =
Q1

2
− 3Q2

2
− 2RC (42)

The third step is to determine the strain energy in the system in terms of
the known external loads, imaginary loads, and redundant loads. In our case,
these are Q1, Q2, and RC . The equation for strain energy in this beam is given
by Eq. 43. Note that there are no axial or torsional loads, and we assume the
shear contribution is negligible in this case.

U =
1

2

∫ L

0

M(x)2

EI
dx (43)

To find the internal bending moment M(x), we will need to follow the shear
and moment diagram cutting procedure. An example of the first cut is given
by Fig. 10.
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Figure 10: 1st Shear and Moment Cut

At the end of the cutting process, we get the strain energy given in Eq. 44.

U =
L3(Q2

1 + 3Q1Q2 + 6Q1RC + 6Q2
2 + 26Q2RC + 32R2

C)

768EI
(44)

The next step is to solve for the redundant loads (RC). We take advantage
of the fact that the redundant loads are kinematically constrained, and the
displacement of a load fixed with a joint will be zero. The equation then is
given by Eq. 45.

∂U

∂RC
=

L3(6Q1 + 26Q2 + 64RC)

768EI
= 0 (45)

After solving, we find that the redundant load is equivalent to Eq. 46.

RC = −3Q1 + 13Q2

32
(46)

We can then substitute this value into our strain energy to get it in terms
of known and imaginary loads only. This is given by Eq. 47.

U =
L3(23Q2

1 + 18Q1Q2 + 23Q2
2)

24576EI
(47)

Finally, we have all the information we need to solve for the displacement q2.
To do this, we use Castigliano’s 2nd theorem at the corresponding load, which
for us is the imaginary load Q2. This is shown in Eq. 48.

q2 =
∂U

∂Q2
=

L3(18Q1 + 46Q2)

24576EI
(48)

Last, we recall that the imaginary load is imaginary of course (Q2 = 0)!
After substituting this into Eq. 48, we find the displacement given by Eq. 49.
And that concludes our example.

q2 =
3L3Q1

4096EI
(49)
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7 Rayleigh-Ritz Method

While Castigliano’s theorems provide exact solutions to solving for unknown
loads and displacements in structural systems, we can also use approximate
methods to estimate these unknowns more efficiently.

The most popular approximation technique is the Rayleigh-Ritz Method.
The Rayleigh-Ritz method approximates the displacement field with simple
Shape Functions (w(x)) and a finite number of coefficients. The shape func-
tions are based off of the kinematic boundary constraints. Deriving these shape
functions is not essential for this class, so I will not go into detail here. It is
safe to assume that for all Rayleigh-Ritz method problems you will be given the
shape functions necessary.

It is, however, vital to really understand what the shape function is. At any
point x in a 1D structure, the displacement is given by the shape function w(x).

The angular deflection is equal to the slope of the beam given by ∂w(x)
∂x . The

curvature (κ) of the beam at x is given by ∂2w(x)
∂x2 . Note that the curvature can

be related to the bending moment via Eq. 50.

M = −EIκ (50)
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Applying Rayleigh-Ritz Method:

1. Get the shape function w(x) (typically given)

2. Find the total potential energy using Eq. 51. The strain energy (U) of a
bending beam is typically given by Eq. 52. The external work is typically
given by some combination of Eqs. 53 (work of a distributed load), 54
(work of a point load), and 55 (work of an applied moment)

Π = U −WE (51)

U =
1

2

∫ L

0

EI

(
∂2w(x)

∂x2

)2

dx (52)

WE =

∫ L

0

Qi(x)w(x)dx (53)

WE = Qi(x)w(x) (54)

WE = Qi(x)
∂w(x)

∂x
(55)

3. Set the derivative of the total potential energy with respect to each un-
known coefficient to zero and solve for each coefficient as shown in Eq.
56

∂Π

∂c1
= 0,

∂Π

∂c2
= 0, ...

∂Π

∂cn
= 0 (56)

4. Substitute coefficients in the shape function

5. Solve for the external work, strain energy, total potential energy, displace-
ment, or whatever else is required

Again, let us use an example to illustrate this process. Our example is given
by Fig. 11, which is a beam under a point load. Our shape function is given by
Eq. 57, where we have an unknown coefficient c1. Our goal will be to identify
the displacement at L/2.
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Figure 11: Rayleigh-Ritz Method Example

w(x) = c1x
2 (57)

The first step is to get our shape function. Thankfully, this is provided in
the problem via Eq. 57.

The second step is to determine the total potential energy (Π). As seen in
Eq. 51, the total potential energy is made up of two components: the strain
energy (U) and the external work (WE). Solving for these using previously
noted equations, we find the total potential energy given by Eq. 58.

Π =
8c21EIL−Q1c1L

2

4
(58)

The third step is to solve for the unknown coefficient (c1) using the derivative
of the total potential energy with respect to each unknown coefficient (Eq. 59).

∂Π

∂c1
= 16c1EIL−Q1L

2 = 0 (59)

The value for our unknown coefficient is then solved to be Eq. 60.

c1 =
Q1L

16EI
(60)

We can now plug this value back into our shape function, given by Eq. 57.

w(x) =
Q1L

16EI
x2 (61)

Finally, we can find the displacement (q1) caused by Q1 at L/2 by plugging
x = L/2 into our shape function Eq. 61. The result is given in Eq. 62.

q1 =
Q1L

3

64EI
(62)
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A MATLAB Codes

% AA240

% Energy Methods Code - Castigliano ’s 2nd Theorem

% Author(s): Mark Paral

% Clear workspace

clc

clear all

close all

% Create symbolic variables

syms E I L RC Q1 Q2 x q2

RB = Q1/2 - 3*Q2/2 - 2*RC;

% Create strain energy

U = 0;

% Strain energy x = [0,L/4]

M1 = RC*x;

U1 = 1 / (2*E*I) * int(M1^2,x,[0,L/4]);

% Strain energy x = [L/4,L/2]

M2 = RC*x + Q2*(x-L/4);

U2 = 1 / (2*E*I) * int(M2^2,x,[L/4,L/2]);

% Strain energy x = [L/2,3L/4]

M3 = RC*x + Q2*(x-L/4) + RB*(x-L/2);

U3 = 1 / (2*E*I) * int(M3^2,x,[L/2,3*L/4]);

% Strain energy x = [3L/4,L]

M4 = RC*x + Q2*(x-L/4) + RB*(x-L/2) - Q1*(x-3*L/4);

U4 = 1 / (2*E*I) * int(M4^2,x,[3*L/4,L]);

% Total strain energy

U = simplify(U1 + U2 + U3 + U4);

pretty(U)

% Calculate redundant load

eq1 = 0 == diff(U,RC);

pretty(eq1)

RC_val = simplify(solve(eq1 ,RC));

pretty(RC_val)

% Sub in redundant load to strain energy
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U = simplify(subs(U,RC,RC_val));

pretty(U)

% Calculate displacement

eq2 = q2 == diff(U,Q2);

pretty ((eq2));

q2_val = simplify(subs(solve(eq2 ,q2),Q2 ,0));

pretty(q2_val)
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