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Variable Definitions

F Force

V Shear force

M Moment

T Torque

b Base dimension

h Height dimension

r Radius

L Length

∆L Change in length

A Area

σ Stress

τ Shear stress

σ̄ Stress vector

σ Stress tensor

T̄ Traction vector

ε Strain

γ Engineering strain

ē Strain vector

e Strain tensor

ν Poisson’s ratio

E Young’s modulus

G Shear modulus

R Direction cosine matrix (DCM)

T Transformation matrix

Q First moment of area / statical moment of area

I Area moment of inertia / second moment of area

J Second polar moment of area
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C Stiffness matrix

S Compliance matrix

α Angular acceleration

ϕ Angle of twist

1 Introduction

Solid Mechanics is the study of how solid materials will behave under a variety
of forces and deformations. It’s an important topic for aerospace engineering
as we want to predict how our materials will hold up under different loading
conditions, say on the wing of an aircraft. This topic underpins all of aerospace
structures, so learning and understanding it to a high degree is essential to be
successful in this or any aerospace structures related class.

With that motivation, let’s dive into the fundamental concepts you will need
to succeed in a graduate level aerospace structures course.

2 Isotropic Materials

Isotropic Materials are materials who’s properties remain the same inde-
pendent of direction. In essence, the application of loads in any direction will
produce predictable and uniform responses. This allows us to simplify many of
the calculations analyzing performance. Note that only isotropic materials are
generally considered in fundamental structural mechanics courses. Examples of
isotropic materials include many metals and plastics.

There are many other classifications for materials that are not isotropic. If
interested, the reader may review

1. Quasi-Isotropic Materials (sometimes called Transversely Isotropic)

2. Anisotropic Materials

3. Orthotropic Materials

4. Homogeneous Materials

5. Heterogeneous Materials

3 Stress and Strain

The most fundamental quantities in solid mechanics are stress and strain. But
what exactly do these concepts represent and why are they important?
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3.1 Stress

Stress (typically denoted as σ) is the force per unit area acting on an object
(Eq. 1). The units are typically

[
N
m2

]
in metric.

σ =
F

A
(1)

Stress is meaningful as it illustrates how the forces are distributed across the
material. With that information, we can evaluate how the material performs
under different loading conditions.

There are two categories of stress: normal and shear. Differentiating be-
tween the two is a matter of direction. Normal Stress (σ) acts in a direction
perpendicular to the surface of a material. Shear Stress (τ) acts in a direc-
tion parallel to the surface of a material. This is more clearly depicted in Fig.
1. An important aspect of shear stresses is that all shear stresses τij = τji as
unbalanced shear stresses would cause a net torque (impossible for an internal
quantity).

Figure 1: Normal and Shear Stress (Chang via Analysis of Structures)

There are two primary of ways of representing the stresses acting on a mate-
rial: vector and tensor. The Stress Vector is simply a vector of all the stresses
acting on a material. An example of this is given by Eq. 2 (recall τij = τji).
The Stress Tensor is a matrix of all the stresses acting on a material. An
example of this is given by Eq. 3.
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σ̄ =


σxx

σyy

σzz

τyz
τxz
τxy

 (2)

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 (3)

The Principle Stress is the stress in the particular case where the shear
stresses are zero (τij = 0). This can be accomplished for any set of stresses
through a frame rotation. The process for finding principle stresses is a matter
of eigenvalues and eigenvectors. The eigenvalues are the principle stresses, while
the corresponding eigenvectors are the directions those principle stresses are
acting in (relative to the original frame of reference). Note that by convention,
σ1 > σ2 > σ3.

Traction (T̄ ) is the force per area acting on a specific surface of a material.
In essence, it is the stress acting on a specific plane in the material. While the
stress is a generalized representation for loading at a point in a material, the
traction will give specifics on a plane defined by the unit normal vector n̂. The
equation for finding the traction vector is given in Eq. 4. The normal and shear
components of the traction vector are given by Eqs. 5 and 6, respectively.

T̄ = σn̂ (4)

|T̄normal| = T̄ · n̂ (5)

|T̄shear| = ∥T̄ × n̂∥2 (6)

3.2 Strain

Strain (typically denoted as ε) is a measure of the deformation of a material
under stress (Eq. 7). Strain is a unit-less quantity.

ε =
∆L

L
(7)

Strain is meaningful as it illustrates how the material changes shape under
loading conditions described by stress (see these fundamental quantities are
already becoming important!).

There are two categories of strain: normal and shear (just as with stress).
The differences between these three are a matter of stress applied. Normal
Strain is the strain in response to a normal stress. Shear Strain is the strain
in response to a shear stress. These strains are depicted in Fig. 2.
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Figure 2: Normal and Shear Strain

The Engineering Strain (γ) is an important quantity in solid mechanics.
It is defined as being twice the strain (Eq. 8). While we don’t use this quantity
for normal strains, it is almost exclusively used instead of shear strain for most
equations, so be aware!

γ = 2ε (8)

There are, similar to stresses, two primary of ways of representing the strains
acting on a material: vector and tensor. The Strain Vector is simply a vector
of all the strains of a material. An example of this is given by Eq. 9 (recall
τij = τji, similarly γij = γji). The Strain Tensor is a matrix of all the Strains
acting on a material. An example of this is given by Eq. 10.

ē =


εxx
εyy
εzz
γyz
γxz
γxy

 (9)

e =

εxx γxy γxz
γyx εyy γyz
γzx γzy εzz

 (10)

The Principle Strain is the case where the shear strains are zero (γij = 0).
This can be accomplished for any set of strains through a frame rotation. The
process for finding principle strains is a matter of eigenvalues and eigenvectors.
The eigenvalues are the principle strains, while the corresponding eigenvectors
are the directions those principle strains are acting in (relative to the original
frame of reference). Note that by convention, ε1 > ε2 > ε3.

Poisson’s Ratio (ν) is a quantity that relates the strain in the transverse
direction (perpendicular to loading) to the strain in the axial direction (parallel
to loading). It is defined in Eq. 11, and the directions are illustrated in Fig. 3.

ν = −εtrans
εaxial

(11)
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Figure 3: Poisson’s Ratio Relationship

4 Frame Rotations

In many cases, it may be advantageous to perform mechanical calculations in a
frame different from the one initially given in a problem (think principle stresses,
for example). Thus, being able to transform from one frame to another is an
important skill to have. An example of a frame rotation is depicted in Fig. 4.

Figure 4: Sample Frame Rotation about x̂3

A type of transformation matrix you’re probably familiar with is the Direc-
tion Cosine Matrix (R), which describes the rotation of a vector from one
frame to another (Eq. 12). This matrix can be used to transform stress tensors
with Eq. 13. x′

y′

z′

 = R

xy
z

 (12)
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σ′ = RσR⊤ (13)

An example of a direction cosine matrix is given in Eq. 14, where there is a
rotation θ about the x̂3 axis (like that depicted in Fig. 4).

Rx3 =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

 (14)

A Transformation Matrix (T ) is a matrix used to rotate the stress vec-
tor from one frame to another (Eq. 15). The transformation matrix can be
determined by solving for each component of the stress tensor (σ′

ij) with the
direction cosine matrix method, then rewriting in vector form.

σ̄′ = T σ̄ (15)

5 Area Moments

The area moments are important to define as they give some quantifiable value
to the concepts of bending and torsion resistance.

5.1 First Moment of Area

The First Moment of Area or Statical Moment of Area (Q) is a value
describing the distribution of the area of a shape in relation to the axes. The
equations describing this quantity are given by Eqs. 16 and 17. Note that for
these equations and figures, we assume x̂ and ŷ are axes that make up the cross
sectional plane.

Qx =

∫
ydA (16)

Qy =

∫
xdA (17)

This concept is useful for calculating the centroid of a shape as well as
determining the shear distribution across a cross-section (more on this in future
sections).

5.2 Area Moment of Inertia / Second Moment of Area

The Area Moment of Inertia or Second Moment of Area (I) is a value
describing how resistant to bending a shape is. This is the quantity that justifies
an I-beam is a more efficient design than a solid rectangle, for example. The
general equations for describing the area moment of inertia are given by Eqs. 18
and 19. A few specific cases are given in Tab. 1. Note that for these equations
and figures, we assume x̂ and ŷ are axes that make up the cross sectional plane.
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Ix =

∫
y2dA (18)

Iy =

∫
x2dA (19)

Cross-Section Area Moment of Inertia

Solid Rectangle Ix = bh3

12 , Iy = b3h
12

Solid Circle Ix = Iy = π
4 r

4

Hollow Circle Ix = Iy = π
4 (r

4
outer − r4inner)

Table 1: Area Moment of Inertia for Select Cross-Sections Centered at Origin

An important element to remember when calculating the Area Moment of
Inertia is you can add and subtract simpler moments to get the more complex
geometries. For example, the hollow circle moment can be derived by taking a
solid circle at the outer radius and subtracting a solid circle at the inner radius.

The Parallel Axis Theorem allows you to use the area moment of inertia
of a cross section centered at the origin to find one translated some distance d
along an axis. The governing equation is given by Eq. 20, and a demonstration
is shown in Fig. 5.

Ix = Icx +Ad2 (20)

Figure 5: Parallel Axis Theorem Application

5.3 Second Polar Moment of Area

The Second Polar Moment of Area (J) is a value that describes how resis-
tant the object is to torsion. The equation describing this quantity is given by
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Eq. 21, and is depicted in Fig. 6. Note that we assume that ẑ is the twisting
axis.

J =

∫
ρ2dA (21)

Figure 6: Second Polar Moment of Area

The Perpendicular Axis Theorem allows you to calculate the second
polar moment of inertia using the area moment of inertia, which is often more
straight forward to compute. The equation for the perpendicular axis theorem
is given by Eq. 22.

J = Ix + Iy (22)

6 Hooke’s Law

In the application of solid mechanics, we may have situations where we know
the strain and desire the stress value or vice versa. Thankfully, there is an
equation which relates the two. This equation is known as Hooke’s Law, and
it describes the linear relationship between elastic materials. Hooke’s law is
defined in Eqs. 23, 24, 25, and 26.

Eq. 23 defines Hooke’s law for normal stresses and strains. The E value is
commonly referred to as the Young’s Modulus and relates stress and strain
linearly. Fig. 7 depicts this relationship well.

σ = Eε (23)

Eq. 24 defines Hooke’s law for shear stresses and strains. The G value is
commonly referred to as the Shear Modulus and relates stress and engineering
strain linearly.
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τ = Gγ (24)

Eqs. 25 and 26 define Hooke’s law in general for both normal and shear
stresses and strains. The C value is commonly referred to as the Stiffness
Matrix and the S value is the Compliance Matrix (Yes, you read that right.
It’s confusing I know). As you may have guessed, these matrices can be built
using Young’s and shear moduli, as well as other material properties.

σ̄ = Cē (25)

ē = Sσ̄ (26)

Figure 7: Stress-Strain Relationship (Nicoguaro via Wikimedia)

Taking a longer look at Fig. 7, you will notice that initially the stress-strain
relationship is linear. In this region, Hooke’s law is accurate and applicable.
This is the region known as Elastic Deformation, where any deformations
made are not permanent and the material will return to its original unloaded
state once the load is removed. The Yield Strength marks the transition from
elastic deformation to Inelastic Deformation or Plastic Deformation. In
this region, even once the load is removed the material will not return to its
original unloaded state. The material will now have a permanent deformation.

Revisiting the elastic constants (Young’s modulus, shear modulus, and Pois-
son’s ratio), there is a vital equation that relates the three together for isotropic
material given by Eq. 27.

E = 2G(1 + ν) (27)
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7 Equilibrium Equations

Some of the most fundamental and important equations in solid mechanics are
the Equilibrium Equations. These equations balance the forces and moments
inside a material body which is in equilibrium, or not accelerating (typically at
rest or in constant motion). The equations are described by Eqs. 28 (sum of the
forces in any direction are zero) and 29 (sum of the moments in any direction
are zero). ∑

Fx,y,z = 0 (28)

∑
Mx,y,z = 0 (29)

8 Beam Bending and Torsion

8.1 Beam Bending

One of the most fundamental loading situations in mechanics is Beam Bend-
ing. Beam bending can occur in many different scenarios, from applied moments
to triaxial loading. Importantly, there are stress equations that can be applied
for isotropic material under bending (like seen in Fig. 8).

Figure 8: Beam Bending Example

First you have Eq. 30, which describes the axial stress from a bending
moment. It is dependent on the bending moment (M), the second moment of
area (I), and the location offset from the neutral axis (y). Note the Neutral
Axis is the axis about which there are no longitudinal stresses or strains in the
structural element.

σ =
My

I
(30)

There is also Eq. 31, which describes the shear stress from a bending mo-
ment. It is dependent on the shear force (V ), the first moment of area (Q), the
second moment of area (I), and the width of the cross section (b).
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τ =
V Q

Ib
(31)

8.2 Shaft Torsion

Another fundamental loading situation is Shaft Torsion. Torsion occurs when
a material is twisted (by twisting both ends in opposite directions or by holding
one end steady and twisting the other). It occurs with an applied torque, and
an example is depicted in Fig. 9.

Figure 9: Shaft Torsion Example

It causes shear stresses within the material which can be calculated using
Eq. 32 (T is applied torque, r is radius, and J is the second polar moment of
area). Also note that the maximum shear stress in a shaft under torsion occurs
at the surface where the radius is at a maximum.

τ =
Tr

J
(32)

Another important relationship is between torque, second moment of area
(I), and the angular acceleration (α) given in Eq. 33.

T = Iα (33)

Often it is useful to know the amount of twist a shaft undergoes given a
torque. This can be found using the equation for angle of twist (ϕ) given by Eq.
34, where L is the shaft length and G is the shear modulus.

ϕ =
TL

GJ
(34)
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