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Variable Definitions

F Force

V Shear force

P Axial force

R Reaction force

M Moment

T Torque

σ Stress

ε Strain

L Length

∆L Change in length

A Area

ν Poisson’s ratio

E Young’s modulus

G Shear modulus

Q First moment of area / statical moment of area

I Area moment of inertia / second moment of area

J Second polar moment of area

ks Linear spring constant

kt Torsional spring constant

U Strain energy

WE External work

KE Kinetic energy

HE Heat absorbed

Π Total potential energy

w Shape function

κ Curvature
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1 Introduction

A very important aspect of aerospace structures is the way they fail. No one
wants to lose a wing at 35,000ft. Understanding under what loads and in what
manner the structures will fail can help us when designing fail-safe and damage-
tolerant designs. We will broadly investigate two different failure modes, buck-
ling and yielding.

2 Buckling - Compression Failure

Buckling is the abrupt change of shape of a structural element under some
loading condition. In this course, we will investigate buckling failures due to
compressive loads. An example of this can be seen when a soda can is crushed
and changes shape (Fig. 1).

Figure 1: Soda Can Buckling Failure (Wright via American Physical Society)

When dealing in buckling failures, there are certain quantities we are typ-
ically interested in that I alluded to before. First, we care about the buckling
load (Pcr). This is the critical compressive load under which the structure will
first buckle. Second is the buckling mode (or mode shape). This describes how
the structure will fail, aka the shape the structure will take post buckling.

To solve for these quantities, we will employ two methods: the Analytical
Method and the Rayleigh-Ritz Method.

2.1 Analytical Method

TheAnalytical Method uses Euler-Bernoulli beam theory and stability theory
to analyze the buckling behavior of beams.

From Euler-Bernoulli beam theory, we have a governing differential equation
(Eq. 1) which describes a beam under compressive axial loading.

d4w

dx4
+ λ2 d

2w

dx2
= g(x) (1)
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Note that we define λ =
√

P
EI , and g(x) is a function which represents the

contribution of external distributed loads on the structure. Most importantly,
w(x) is the shape function which is used to describe the displacement field of a
structure. The shape function is a valuable tool because every displacement and
load in a structure can be written as a function of it. See Tab. 1 for examples.
Note that the function for the internal shear force is written here to include the
contribution due to an external compressive load P .

Shape Function Representation Physical Meaning
w(x) Linear Displacement
w′(x) Rotational Displacement

M(x) = −EIw′′(x) Bending Moment
V (x) = −EIw′′′(x)− Pw′(x) Shear Force

Table 1: Shape Function Meanings

Using the governing differential equation (Eq. 1), we can solve for the Gen-
eral Shape Function for a beam given by Eq. 2.

w(x) = A sin(λx) +B cos(λx) + Cx+D + f(x) (2)

While we have this general shape function describing the bending of a beam,
we still do not have all the information we need to solve the problem. We do
not know values for the coefficients A, B, C, D, or f(x). To solve, we will use
the boundary conditions of the problem. The boundary conditions can be split
into two categories: displacement boundary conditions and loading boundary
conditions.

Displacement Boundary Conditions account for the information we
know about the displacement field of the structure. They take advantage of
the physical interpretation of the shape function as a linear and rotational dis-
placement. At joint locations, we know the displacement field is fixed in some
manner. Thus, we can use this information to help us solve for the shape func-
tion coefficients. In particular, we can use the equations given in Eq. 3. If the
beam is fixed such that it cannot displace linearly at location x, we can say
that w(x) = 0. If the beam is fixed such that it cannot displace rotationally at
location x, we can say that w′(x) = 0.

w(x) = 0

w′(x) = 0
(3)

Loading Boundary Conditions account for the information we know
about the loading of a structure, particularly the bending moments and shear
forces. In particular, we can use the equations given in Eq. 4.

M(x) = −EIw′′(x)

V (x) = −EIw′′′(x)− Pw′(x)
(4)
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Finally, we also have some idea of what f(x) will be. f(x) is a contribution
to the shape function that results from a distributed load. If we are given a
distributed load over our beam q(x), we can rewrite f(x) using Eq. 5. Otherwise,
f(x) = 0.

f(x) =
q(x)x2

2λ2EI
=

q(x)x2

2P
(5)

Not considering f(x) since that is trivial to calculate, we know we will need
4 boundary conditions to solve for 4 unknown coefficients (A, B, C, and D).
Once we’ve identified 4 boundary conditions, we can rewrite them in matrix
form with Eq. 6.

[
M

] 
A
B
C
D

 = b⃗ (6)

Now there is also another unknown we are trying to solve for: the critical
buckling load Pcr. We can solve for this by setting the characteristic equation

of [M ] equal to zero as seen in Eq. 7. Also recall that λcr =
√

Pcr

EI

det([M(λcr)]) = 0 (7)

Finally, we can use Pcr to solve for the unknown coefficients (A, B, C,
and D) by substituting the value of Pcr back into the system of equations.
Unfortunately, we cannot explicitly solve for every unknown coefficient, and
one will be left independent (or unknown). However, the other three can be
written as a function of this one independent coefficient. With these coefficients
identified, we can now write the buckling mode (or mode shape) as w(x).

Changing the value of the independent coefficient will not change the ”shape”
of the mode shape. Instead, it will simply change the magnitude of mode shape,
which we can adjust to fit real world displacements later on. An example of how
the mode shape can vary with different values of the independent coefficient is
depicted in Fig. 2. We can see that the independent coefficient acts as a scaling
factor. While the general shape remains the same, the displacement at buckling
can be adjusted with the independent coefficient.
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Figure 2: How Mode Shape can Vary with Independent Coefficient

Another important concept of note is the Symmetry Condition. The
symmetry condition allows us to simplify a beam buckling problem by making
the assumption that the displacement and loading in a beam is symmetric about
some midpoint. Thus, we can add a specific boundary condition given by Eq.
8 (assuming the symmetry is about x = L/2).

w′(L/2) = 0 (8)

Let’s try and outline this whole process in a succinct manner.
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Applying Analytical Buckling Method:

1. Write general shape function given by Eq. 9

w(x) = A sin(λx) +B cos(λx) + Cx+D + f(x) (9)

2. Do we have a distributed load (q(x))? If yes, rewrite f(x) using Eq. 10.
Otherwise, set f(x) = 0

f(x) =
q(x)x2

2λ2EI
=

q(x)x2

2P
(10)

3. Identify four boundary conditions using both displacement and loading
boundary conditions (Tab. 2)

Shape Function Representation Physical Meaning
w(x) Linear Displacement
w′(x) Rotational Displacement

M(x) = −EIw′′(x) Bending Moment
V (x) = −EIw′′′(x)− Pw′(x) Shear Force

Table 2: Shape Function Meanings

4. Rewrite boundary conditions in matrix form using the relationship given
in Eq. 11

[
M

] 
A
B
C
D

 = b⃗ (11)

5. Solve for the critical compressive buckling load (Pcr), using Eqs. 12 and
13

det([M(λcr)]) = 0 (12)

λcr =

√
Pcr

EI
(13)

6. Solve for A, B, C, and D by substituting the value for Pcr into the
boundary condition equations. Note that one of these coefficients will
be unknown (independent coefficient), and we can make solving easier by
setting this unknown coefficient equal to 1
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Let’s run through a quick example to solidify the concept. Find the critical
compressive buckling load and mode shape from Fig. 3.

Figure 3: Analytical Buckling Example

First, we can write the general shape function given by Eq. 14.

w(x) = A sin(λx) +B cos(λx) + Cx+D + f(x) (14)

Since we have a distributed load, we can represent f(x) with Eq. 15.

f(x) =
qx2

2P
(15)

We need to identify 4 boundary conditions in order to solve for the 4 unknown
coefficients A, B, C, and D. Let’s start with displacement boundary conditions.
Since one end of the beam is fixed, we know that the linear and rotational
displacements at x = 0 will be 0 (Eq. 16).

w(0) = 0

w′(0) = 0
(16)

Investigating the loading boundary displacements, we know that the moment
and shear force at the free end will be 0. We can write this explicitly using Eq.
17.

M(L) = EIw′′(L) = 0

V (L) = EIw′′′(L) + Pw′(L) = 0
(17)

We can express the derivatives using Eq. 18.

w′(x) = Aλ cos(λx)−Bλ sin(λx) + C +
qx

P

w′′(x) = −Aλ2 sin(λx)−Bλ2 cos(λx) +
q

P

w′′′(x) = −Aλ3 cos(λx) +Bλ3 sin(λx)

(18)

And the boundary conditions can be written explicitly using Eqs. 19 - 22.
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B +D = 0 (19)

Aλ+ C = 0 (20)

A sin(λL) +B cos(λL) =
q

EIλ4
(21)

C = − Lq

EIλ2
(22)

We can now rewrite the boundary conditions in matrix form as seen with
Eqs. 23 and 24.

[M ] =


0 1 0 1
λ 0 1 0

−EIλ2 sin(λL) −EIλ2 cos(λL) 0 0
0 0 EIλ2 0

 (23)

[M ]


A
B
C
D

 =


0
0

− q
λ2

−Lq

 (24)

We can solve for the buckling load using the determinant of the boundary
condition matrix [M ] (Eq. 25). We find the buckling load as Eq. 27.

det([M ]) = E2I2λ5 cos(λL) = 0 (25)

λcr =
π

2L
(26)

Pcr =
EIπ2

4L2
(27)

We can solve for the 4 coefficients by solving the boundary conditions and
determining the values in Eq. 28. In this particular example, we get an explicit
solution. This is often not the case, however.

A =
Lq

EIλ3

B = −q(Lλ sin(Lλ)− 1)

EIλ4 cos(Lλ)

C = − Lq

EIλ2

D =
q(Lλ sin(Lλ)− 1)

EIλ4 cos(Lλ)

(28)

Substituting these values for the coefficients into the shape function, we get
Eq. 29.
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w(x) =
Lq

EIλ3
sin(λx)− q(Lλ sin(Lλ)− 1)

EIλ4 cos(Lλ)
cos(λx)− Lq

EIλ2
x

+
q(Lλ sin(Lλ)− 1)

EIλ4 cos(Lλ)
+

qx2

EIλ2

(29)

Importantly, we know that cos(Lλcr) = 0. Because the coefficients B and
D include (cos(Lλcr))

−1, we know that they will tend towards infinity. Thus,
they will be much larger than the other components of the shape function, so
we can neglect these other components. We can rewrite the shape function with
Eq. 30.

w(x) =
q(Lλ sin(Lλ)− 1)

EIλ4
(1− cos(λx)) (30)

Finally, substituting in the critical buckling load, we find that the mode
shape can be described with Eq. 31.

w(x) =
16L4q(π2 − 1)

EIπ4
(1− cos(

πx

2L
)) (31)

2.2 Rayleigh-Ritz Method

The Rayleigh-Ritz Method uses energy method approximation techniques
(like those seen in the Energy Methods note) to solve for the desired beam
buckling quantities. Instead of using boundary conditions like in the analytical
method, we will instead use the principle of minimum total potential energy to
our advantage.

We start with some approximate shape function (w(x)) which we will use
unknown coefficients to describe the displacement field of the beam. Based
on the particular problem, we can write the total potential energy (Π) as a
combination of the strain energy (U) and external work applied (WE) as seen
in Eq. 32.

Π = U −WE (32)

Once we have written the total potential energy as a function of the shape
function, we can use the principle of minimum total potential energy to write
a system of equations with respect to the unknown shape function coefficients
(Eq. 33).

∂Π

∂c1
= 0,

∂Π

∂c2
= 0, ...

∂Π

∂cn
= 0 (33)

We can write this equation in matrix form as seen in Eq. 34.

[M ]


c1
c2
...
cn

 = b⃗ (34)
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From this matrix form, we can solve for the critical buckling load Pcr using
Eq. 35.

det([M ]) = 0 (35)

Finally, we can find the mode shape by finding the unknown coefficients
with the relationship in 34 where we’ve substituted Pcr for P . Unfortunately, we
don’t have enough information to explicitly solve for both coefficients. However,
we should be able to write the mode shape in terms of a single independent
coefficient (see previous section for more details).

Let’s try and outline this whole process in a succinct manner.
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Applying Rayleigh-Ritz Method:

1. Get the shape function w(x) (typically given)

2. Find the total potential energy using Eq. 36. Note some common strain
energy and applied external work formulations are provided here

Π = U −WE (36)

Umoment =
1

2

∫ L

0

EI (w′′(x))
2
dx (37)

WEaxial
=

1

2

∫ L

0

P (x) (w′(x))
2
dx (38)

3. Set the derivative of the total potential energy with respect to each un-
known coefficient to zero as shown in Eq. 39

∂Π

∂c1
= 0,

∂Π

∂c2
= 0, ...

∂Π

∂cn
= 0 (39)

4. Rewrite the derivative system of equations in matrix form as seen in Eq.
40

[M ]


c1
c2
...
cn

 = b⃗ (40)

5. Solve for the buckling load using Eq. 41

det([M ]) = 0 (41)

6. Solve for unknown coefficients (c1, ... cn) by substituting the value for Pcr

into the boundary condition equations. Note that one of these coefficients
will be unknown (independent coefficient), and we can make solving easier
by setting this unknown coefficient equal to 1

Let’s solidify this process with an example. In fact, let’s do the same problem
from the analytical section. Find the critical buckling load and the mode shape
from Fig. 4. Use the shape function given in Eq. 42.
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Figure 4: Rayleigh-Ritz Buckling Example

w(x) = c1x
3 + c2x

4 (42)

First we are going to write the total potential energy of the system. We can
write the strain energy in the system with Eq. 43, and the external work with
the Eq. 44. The total potential energy can be expressed with Eq. 45

U =
1

2

∫ L

0

EI (w′′(x))
2
dx

=
6EIL3(12L2c22 + 15Lc1c2 + 5c21)

5

(43)

WE =
1

2

∫ L

0

P (w′(x))
2
dx+

∫ L

0

qw(x)dx

=
L5P (80L2c22 + 140Lc1c2 + 63c21)

70
+

L4q(5c1 + 4Lc2)

20

(44)

Π = U −WE

=
6EIL3(12L2c22 + 15Lc1c2 + 5c21)

5

−
(
L5P (80L2c22 + 140Lc1c2 + 63c21)

70
+

L4q(5c1 + 4Lc2)

20

) (45)

We can then set the derivatives of the total potential energy with respect to
the coefficients equal to zero as in Eq. 46.

∂Π

∂c1
= 0

∂Π

∂c2
= 0

(46)

After this, we can represent the system of derivatives using a matrix rela-
tionship (Eq. 40). Matrix [M ] can be written as in Eq. 47.
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[M ] =

[
− 9PL5

5 + 12EIL3 −2PL6 + 18EIL4

−2PL6 + 18EIL4 − 16PL7

7 + 144EIL5

5

]
(47)

Similarly, b⃗ can be written with Eq. 48.

b⃗ =

[
L4q
4

L5q
5

]
(48)

We can solve for the critical buckling load using Eq. 41. When solving this,
we find two potential buckling loads given by Eq. 49.

Pcr1 = −3EI(2
√
571− 53)

5L2

Pcr2 =
3EI(2

√
571 + 53)

5L2

(49)

To find the mode shape, we can substitute the buckling load back into [M ]

and b⃗, and solve for the relationship between the coefficients (since we don’t
have enough information to solve for both c1 and c2) as in Eq. 50. We can do
this for buckling load 1 and load 2 (Eq. 51).

[M(Pcr)]

[
c1
c2

]
= b⃗(Pcr) (50)

c1(Pcr1) =
0.0016(25Lq − 1174.946EILc2)

EI

c1(Pcr2) =
0.0001(25Lq − 10294.946EILc2)

EI

(51)

With this ratio between coefficients, we can write the mode shape for buck-
ling load 1 with Eq. 52, and the mode shape for buckling load 2 with Eq.
53.

w(x) = c2

(
0.0016(25Lq − 1174.946EIL)

EI
x3 + x4

)
(52)

w(x) = c2

(
0.0001(25Lq − 10294.946EIL)

EI
x3 + x4

)
(53)

3 Yielding - Tension Failure

Material Failure is defined as the loss of the load carrying capacity of a
material. In other words when a material can no longer bear loads, it has
failed. Defining when failure may occur often relies on a multitude of different
theory approaches which perform more or less accurately given the context of
the problem. There are also different classifications of failure for materials that
are ductile or brittle.
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1. Ductile Materials will deform and stretch plastically before fracture oc-
curs. For these materials, the yield stress typically indicates the transition
from elastic deformation to plastic deformation.

2. Brittle Materials will not deform plastically and instead fracture. For
these materials, the yield stress typically indicates the failure of the ma-
terial.

For isotropic materials, the most popular failure conditions are stress depen-
dent. For this reason, we will cover the failure criteria of Tresca and von Mises.
We will also determine the residual stresses left from plastically deforming a
structure.

3.1 Tresca and von Mises

Tresca and von Mises criterias allow us to relate the principle stresses to the
yield stress. Solving for the yielding stress based on either criteria will give the
1D stress state that will induce yielding in the material. Consequentially, the
reverse is also true.

Figure 5: Relationship Between Tresca and von Mises Failure Criteras

The Tresca Criteria is typically more conservative than the von Mises
criteria (relationship seen in Fig. 5). It argues that the yielding stress can be
found when the maximum shear stress reaches a critical value dependent on the
principle stresses. Using Tresca, the yield stress can be expressed using Eq. 54.

σT = max{|σ1 − σ2|, |σ1 − σ3|, |σ2 − σ3|} (54)

The von Mises Criteria is typically more accurate than Tresca criteria. It
argues that the yielding stress can be found based on the maximum distortion
energy. Similarly to Tresca, this yield stress can be expressed based on the
principle stresses (Eq. 55).
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σvM =

√
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2

2
(55)

3.2 Residual Stress

Residual Stresses are the stresses left in a material after inelastic deformations
occur. When plastic deformation occurs, the material will not elastically return
to its original shape. Instead, the material has been permanently altered. This
permanent alteration can lead to residual stresses.

We can calculate the residual stress in a few different ways, but it all boils
down to one formula (Eq. 56). This formula states that the residual stresses can
be calculated by taking the difference between the actual stresses in a material
and subtracting the stress if the material behaved purely elastically.

σR = σactual − σelastic (56)

Let’s walk through an example to concretely illustrate this concept. In Fig.
7, we are given a truss structure composed of three beams: AD, BD, and CD.
We assume they all have the same properties, and that P is applied to the point
that all bars reach the yield stress, σy. We want to determine the residual stress
left in the structure if the load P is removed.

Figure 6: Yielding Example

To solve this problem, let us return to Eq. 56. To solve for the residual
stress, we need to know the actual stress and the pure elastic stress. Based on
the problem statement, we already know the actual stress of all the beams are
σy (Eq. 57). Great, we’re already half way there! Now, we need to use elastic
stress-strain relationships to solve for the pure elastic stress.

σactual
AD = σactual

BD = σactual
CD = σy (57)
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Firstly, we need to determine what the load P actually is. We know that
the actual stress in each bar is σy. Thus, we also know that the axial load each
bar bears can be given Eq. 58.

FAD = FBD = FCD = σyA (58)

Sketching the FBD of the system (Fig. 7), we can use equilibrium equations
to solve for P in Eq. 59.

Figure 7: FBD of Yielding Structure

∑
Fy = 0 = (FAD + FCD) cos(45◦) + FBD − P

P = (1 +
√
2)σyA

(59)

Now that we know what P is, we can find a relationship between all axial
loads in the structure assuming purely elastic behavior. We know that the
relationship between the elongation of the bars can be given by Eq. 60 using
geometry.

∆LAD = ∆LCD =

√
2

2
∆LBD (60)

With this information, we can relate FAD, FBD, and FCD using stress strain
relationships as seen in Eqs. 61 and 62.

σAD = EεAD = E
∆LAD

LAD

FAD = EA
∆LAD

LAD

FAD = FCD =
1

2L
EA∆LBD

(61)
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σBD = EεBD = E
∆LBD

LBD

FBD = EA
∆LBD

LBD

FAD = FCD =
1

L
EA∆LBD

(62)

And we can relate the axial loads to one another with Eq. 63.

FAD = FCD =
1

2
FBD (63)

Returning to the equilibrium equations, we can now solve for the axial loads
for purely elastic deformations in terms of know quantities (Eq. 64) using the
value for P we determined previously.∑

Fy = 0 = (FAD + FCD) cos(45◦) + FBD − P

P = (1 +

√
2

2
)FBD

FBD =
P

(1 +
√
2
2 )

FBD =
(1 +

√
2)σyA

(1 +
√
2
2 )

FBD =
√
2σyA

FAD = FCD =

√
2

2
σyA

(64)

Finally, we can solve for the purely elastic stress in each bar with Eq. 65.

σelastic
AD = σelastic

CD =

√
2

2
σy

σelastic
BD =

√
2σy

(65)

Using Eq. 56, we now find the residual stresses in each beam as Eq. 66.

σresidual
AD = σresidual

CD = (1−
√
2

2
)σy

σresidual
BD = (1−

√
2)σy

(66)

And with that, we’ve finished the problem!
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A MATLAB Codes

% AA240

% Structural Failure: Analytical Method Example

% Author(s): Mark Paral

% Clear workspace

clc

clear all

close all

% Symbols

syms P lambda x A B C D E I q L

% Shape function

f_x = q*x^2 / (2* lambda ^2*E*I);

w = A*sin(lambda*x) + B*cos(lambda*x) + C*x + D + f_x;

% Shape derivatives

wp = diff(w,x);

wpp = diff(wp ,x);

wppp = diff(wpp ,x);

% Boundary Conditions

eq1 = w == 0;

eq1 = subs(eq1 ,x,0);

eq2 = wp == 0;

eq2 = subs(eq2 ,x,0);

eq3 = E*I*wpp == 0;

eq3 = subs(eq3 ,x,L);

eq4 = E*I*wppp + P*wp == 0;

eq4 = subs(eq4 ,x,L);

% Show boundary conditions

disp("eq1")

simplify(collect(eq1 , [A, B, C, D]))

disp("eq2")

simplify(collect(eq2 , [A, B, C, D]))

disp("eq3")

simplify(collect(eq3 , [A, B, C, D]))

disp("eq4")

simplify(collect(eq4 , [A, B, C, D]))

% Solve for buckling load
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[M,b] = equationsToMatrix ([eq1 ,eq2 ,eq3 ,eq4],[A,B,C,D])

;

det(M)

eq5 = subs(det(M),P,lambda ^2*E*I) == 0;

lambda_cr = solve(eq5 ,lambda);

P_cr = lambda_cr (6) ^2*E*I;

% Solve for coefficients

b = subs(b,P,lambda ^2*E*I);

M = subs(M,P,lambda ^2*E*I);

eq6 = M * [A;B;C;D] == b;

[A_val ,B_val ,C_val ,D_val] = solve(eq6 ,[A,B,C,D]);

disp("A:")

pretty(simplify(A_val))

disp("B:")

pretty(simplify(B_val))

disp("C:")

pretty(simplify(C_val))

disp("D:")

pretty(simplify(D_val))

% Final mode shape

pretty(simplify(subs(simplify (( B_val*cos(lambda*x) +

D_val) ...

* cos(L*lambda)),lambda ,lambda_cr (6))))
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% AA240

% Structural Failure: Rayleigh -Ritz Method Example

% Author(s): Mark Paral

% Clear workspace

clc

clear all

close all

% Symbols

syms P E I L x q c1 c2

% Shape function

w = c1*x^3 + c2*x^4;

% Shape derivatives

wp = diff(w,x);

wpp = diff(wp ,x);

wppp = diff(wpp ,x);

% Total potential energy

U = 0.5* int(E*I*wpp^2,x,[0,L]);

WE = 0.5* int(P*wp^2,x,[0,L]) + int(q*w,x,[0,L]);

Pi = U - WE;

disp("Pi:")

pretty(simplify(Pi))

% Partial derivatives

eq1 = diff(Pi ,c1) == 0;

eq2 = diff(Pi ,c2) == 0;

% Get matrix representation

[M,b] = equationsToMatrix ([eq1 ,eq2],[c1,c2]);

disp("M:")

pretty(simplify(M))

disp("b:")

pretty(simplify(b))

% Find the critical buckling load

eq3 = det(M) == 0;

P_cr = solve(eq3 ,P);

disp("P_cr :")

pretty(simplify(P_cr))

P_cr1 = P_cr (1);

P_cr2 = P_cr (2);
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% Find the mode shape

M1 = subs(M,P,P_cr1);

b1 = subs(b,P,P_cr1);

M2 = subs(M,P,P_cr2);

b2 = subs(b,P,P_cr2);

eq3 = M1*[c1;c2]==b1;

c1_val_1 = solve(eq3(1),c1);

eq4 = M2*[c1;c2]==b2;

c1_val_2 = solve(eq4(1),c1);

disp(" Coefficients :")

disp("- Case 1 c1:")

pretty(vpa(c1_val_1))

disp("- Case 2 c1:")

pretty(vpa(c1_val_2))
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